Strangers in the matrix: plant cell walls and pathogen susceptibility.
نویسندگان
چکیده
Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions. The plant cell wall can be an effective physical barrier to pathogens, but also it is a matrix where many proteins involved in pathogen perception are delivered. By breaching the wall, a pathogen potentially reveals itself to the plant and activates responses, setting off events that might halt or limit its advance.
منابع مشابه
اثر مهاری پروتئینهای مهارکننده پلی گالاکتوروناز لوبیا بر آنزیم پلی گالاکتوروناز قارچهای بیماریزای Fusarium oxysporum و Ascochyta rabiei گیاه نخود
Plant pathogenic microorganisms produce a variety of enzymes capable of degrading different polysaccharides of the plant cell walls. Pathogens use these enzymes to penetrate and colonize host cells. Polygalacturonases are thought to be the first cell wall-degrading enzymes secreted by pathogens when they grow on plant cell walls. Oligogalacturonic acids with the polymerization degrees of 10 to ...
متن کاملاثر مهاری پروتئینهای مهارکننده پلی گالاکتوروناز لوبیا بر آنزیم پلی گالاکتوروناز قارچهای بیماریزای Fusarium oxysporum و Ascochyta rabiei گیاه نخود
Plant pathogenic microorganisms produce a variety of enzymes capable of degrading different polysaccharides of the plant cell walls. Pathogens use these enzymes to penetrate and colonize host cells. Polygalacturonases are thought to be the first cell wall-degrading enzymes secreted by pathogens when they grow on plant cell walls. Oligogalacturonic acids with the polymerization degrees of 10 to ...
متن کاملLYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis.
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin e...
متن کاملExtracellular polysaccharides from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during pathogenesis.
The location of lipopolysaccharides produced by Xanthomonas axonopodis pv. manihotis during pathogenesis on cassava (Manihot esculenta) was determined by fluorescence and electron microscopy immunolabeling with monoclonal antibodies. During the early stages of infection, pathogen lipopolysaccharides were detected on the outer surface of the bacterial envelope and in areas of the plant middle la...
متن کاملLYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis1[C][W][OA]
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in plant science
دوره 13 11 شماره
صفحات -
تاریخ انتشار 2008